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INTRODUCTION 
 
Machine learning (ML) is increasingly used in software applications across industrial 
or business domains. Nowadays, machine learning (ML) algorithms are continually 
improving, with new solutions being developed at a very rapid pace. However, 
these algorithms are just a part of the overall software solution; they are part of a 
much larger ecosystem of technologies used for building software systems.  
 

 

ML brought new challenges and added more complexity to engineering robust, 
resilient, and scalable systems. In this whitepaper we address some of these 
challenges and potential solutions that can help companies of any size mitigate the 
risks encountered during building, testing, validating, and deploying software 
systems that have a large ML component. 
 
The solution we propose falls under a relatively new domain, namely Machine 
Learning Operations (MLOps), and focused on how we can adapt a DevOps mindset 
to facilitate the development and maintenance of ML systems. 
 
Everyone is talking about Machine Learning Operations (MLOps) and trying to figure 
out how to apply it to their data processes. But what is it exactly? How easy or 
complicated might it be to implement MLOps? This short white paper answers 
these questions. 

 

“ 

...data Scientists spend ~80% of their time preparing and 
managing data for analysis” (Forbes*) 

 
* https://www.forbes.com/sites/gilpress/2016/03/23/data-preparation-most-time-consuming-least-enjoyable-data-science-task-
survey-says/?sh=53d634d16f63 
https://www.dataversity.net/survey-shows-data-scientists-spend-time-cleaning-data/ 
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CHALLENGES OF DEVELOPING AN ML SYSTEM 
 

 
Machine learning changed the paradigm used for developing software applications. 
When developing a ML solution engineers do not specify a step-by-step recipe with 
the logical operations required to solve a problem. Instead, they provide the 
machine with a set of examples and build algorithms that figure out the rules or 
steps required to solve the problem by themselves. This different approach for 
building software systems, means that ML solutions introduce a new plethora of 
challenges that developers, engineers, and domain experts need to address. Below 
we highlight the most critical challenges and issues encountered while developing 
ML solutions. 

▪ ML requires experimentation which often results in multiple iterations  
or experiments. 

▪ ML algorithms are metrics-driven which implies manual metrics tracking 
across experiments to determine which algorithm performs the best. This 
activity leads to increased complexity. 

▪ Manually tracking metrics and other logs can lead to numerous errors. 
▪ ML algorithm performance is tightly coupled to the data being used.  

Usually, the data are not versioned which greatly reduces the ability to 
reproduce experiments. 

▪ Changes in the data flowing through the model often require training a new 
model which involves many manual processes. Moreover, once a model is 
trained, it needs to be deployed (again manually). 

▪ Like the data, models are rarely not versioned, which further increases the 
reproducibility issues when developing a ML solution. 

▪ In contrast to traditional software engineering, the development of a ML 
algorithm is often limited to individual development environments that run 
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on local machines. Consequently, this code is not reviewed, and no 
automated testing takes place. More, collaboration can be very difficult.  

▪ The result of an ML algorithm development is a model which leads to many 
situations where the results cannot be reproduced or improved, with model 
maintenance being mostly very poorly performed. 

▪ Minor changes to the data processing or the ML algorithm has far-reaching 
influences across multiple steps of the development pipeline and may even 
contradict previous developments. 

▪ Finally, ML and AI pipelines are developed by Data Scientists, whom are 
experts in this world, but less familiar with the business and the domain in 
which they are active. Therefore, a representation of their research result to 
a domain expert will contribute to the success of the models. 

 

WHAT MLOPS COVERS? 
 
Machine Learning Operations is software versioning management on steroids 
combined with DevOps.  Reconstructing an AI / ML experiment resulting with a 
model, holds a high number of variables involved, such as hyper parameters, 
versions of the data itself, additional processing done on the inference or training 
software and more. Those variables are managed and stored using various tools 
while building the AI pipeline. Additionally, moving models to production is more 
than CI/CD wrapping of the model and preparing it for serving, it's also the ability to 
monitor the performance of the model and detect drifts in the data. Last, is the 
ability to bring the domain expert into the loop, and analyze the changes together 
with the Data Scientist.  
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In the diagram below, the components in the “research” path in the center of the 
image are the regular flow of the data scientists and ML engineers in their research. 
The highlighted components, wrapping that flow are the infrastructure and 
production tool that helps get control of this pipeline, with the ability to also involve 
the domain experts. 
 

 

From research to production and back for continuous improvement.  
 

 

 
 

 

CoreControl platform will help you arrange and enter the new 
age of data-centric via MLOps 
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HOW COMPLICATED IS IT TO START  
MANAGING MLOPS? 
 

 
Most of the MLOps philosophy is to be transparent and included in the research 
and production pipelines, rather than being serial to an existing flow. As such, it 
does not require refactoring any code in the training or operational code. 
With coreControl we help you deploy code pieces in your training and inference 
code, such that initially, you will get documentation of experiments, data versions 
and running models performance. We help your engineers to deploy MLOps 
methodologies easily as our experience is coming horizontally from many 
companies and expertise we acquired.  
 

The initial outcome is a dashboard view that is recording the running experiments. 
In the next stages, a minimal user cooperation is needed in order to be able to 
name the experiments, describe the purpose and hypothesis behind, so it will be 
easy to benchmark the results. 
 

Such results can be obtained within 30 days with CoreAI service. 
 
Our solution also puts the feet on the ground and can work in an entirely on 
premise environment to maintain clients confidentiality. 
 

After the system is up and running, coreControl introduces a no-code experience. 
Thus less experienced engineers can run new experiments directly on your cluster. 
Also, they will be able to easily visualize the data and the models directly from the 
UI, without having to write any additional code. 
 

Most of the data science teams get stuck at the moment when they have to ship 
their model to production. With the help of coreControl you will be able to have 
“control” over this step. In the end, your machine learning solution can bring real 
value to your company. 
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A GOOD SOLUTION HOLDS BUSINESS VALUES 
 
▪ Easy enter into Data-Centric movement  
▪ Continuous Experimentation and CI/CD of your model  
▪ Accelerate the path and time to a successful model  
▪ Automation of ML research process 
▪ Bringing the domain expert into the loop with a collaborative environment  
▪ Easy move from MVP to production, reduce the mode to production by ~3-6 

months 
▪ Knowledge preservation, new employee training is cut by 3-5 months 
▪ Solve real data issues from the field, not hypothesis in the lab 
▪ Reduce data scientist time wasted on infrastructure taks by 90% 
▪ Reduce devops support time by 80% 
▪ FinOps - Managing model training costs and loss prevention alerts 
 

WHY DATA-CENTRIC? 
 

Most of the data scientist's time is spent on data related issues and not necessarily 
on the algorithmic side. It's not that more data can solve and improve the model, 
it's how the data is being improved and sorted properly to serve a better model.  
Improving data quality is becoming significantly more important in the production 
phase when the model meets reality.  

The domain experts are a key player in helping data scientists  to improve the data 
quality and KPI’s that the model is striving for.  

This Data-Centric approach puts the data in the center and not the model itself as 
it's not only “garbage in, garbage out” to create a successful model.  

These trends, data quality improvement and creating a collaborative environment 
that will add the domain experts into the loop, increase the number of experiments 
and the need to manage them and share experiments results. The more 
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experiments you have the better the chances to strive for a better model, however, 
selecting a preferred model should be easy. 

Training costs usually explode when running experiments at scale. Optimize the 
resources used to run experiments and maximize your throughput. 

Taking your model to production means it's a newborn - research to production in a 
few steps with end-to-end visibility of the process. 

Keep your model and pipeline fresh and updated with real data and issues from  
the production.  

 

ROBUST ML SYSTEMS WITH CORECONTROL 
 

The coreControl dashboard that we will provide will store and display the data 
versioning, Git versions, results, and KPIs of trained models and if necessary special 
preprocessing parameters unique for the research. Below are additional aspects 
covered by the coreControl dashboard. 

In this section we will review the MLOps functions covered by coreControl: 
 

▪ Experiment Management / KPIs  
▪ Data Versioning 
▪ Github version 
▪ Model Serving 
▪ Model Monitoring 
▪ Data Monitoring 
▪ FinOps and Infrastructure 
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Experiment 
Management / 
KPIs  

 
 
 

 
 
 

 
 
One of the key factors of an MLOps infrastructure is to track the experiments. After 
dozens or even hundreds of experiments, it is difficult to remember which 
hyperparameters performed best and which one had the leading KPI. coreControl 
can easily be integrated into the training code of your model to keep track of your 
configuration, hyperparameters, and metrics. Also, it has support to log different 
kinds of objects like images, tables, graphs, etc. 
 
Another issue appears after you have logged information for dozens of 
experiments and you want to compare them. coreControl’s simple interface gives 
you the possibility to pin a couple of key metrics that will show up directly into the 
table where you search for experiments. In this manner, you will be able to easily 
surf between experiments and pick the desired one.  
 
One last thing to mention is that you can implement any custom KPI/metric, both 
model and business-wise. Hence, you will always feel in control.  
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Data 
Versioning  

 

 

 

 

 

Data versioning can be applied to the Data Feature set Map, as well as to the new 
data version that is created as a result of the new settings of the encoder. 

CoreAI will automate that the second dataset will be versioned by the first dataset 
version and the committed code of the autoencoder model. 

coreControl is data centric. Therefore, we put emphasis on how to interact with 
the data. The main issue with data versioning systems is that they don't give you a 
clear way to visualize what is going on. After you version your data, it is hard to see 
what is the actual difference between those versions. With current solutions you 
have to download every different version and manually take a look. This is very 
tedious and time consuming. 

With coreControl, for every version of the data, you will be able to see an overall 
description of the data like the number of samples & features, the storage it uses 
and the newest samples that were added. You can easily take a look at statistics 
properties like mean, median, quantiles and more.  Also, for every feature we 
compute the outliers, histogram and distribution.  

The icing on the cake is the fact that you can directly compare multiple versions of 
the data. Thus, you can easily navigate through different versions and understand 
what has changed from one to another.   
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Github 
Versions 

 
 
 

 
 
 
 
Your model training code versioning is critical as well, as changes like preprocessing 
of the data, thresholds are affecting the model performance.  
 
As part of any experiment the version of the Github commit is stored and reported 
on the dashboard. Such information can in later stages serve for investigating 
model KPIs and to be able to spot contributing factors to the model's success or its 
productional behavior.  
 

By versioning the code you will be able to have full control over different variables 
like the configuration of your system and the hyperparameters. Also, one key factor 
that is hard to spot while debugging is the preprocessing and postprocessing 
pipeline. It is submitted to changes over time, therefore a bug can easily be 
introduced. With the help of coreControl those issues can be easily reproduced, 
then you will be able to go back to your working version of the code. 
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Model 
Serving  

 
 
 

 
 
 
 
 
CoreAI will help in wrapping the model serving with a container and if necessary 
add a basic service API.  
 
The model can be served in production using different methods like a Model-as-
Service, where the model is exposed on the internet through a RESTful API, or like a 
Model-as-Package, where the model is shipped as a Python package to be directly 
integrated into other systems. 
 
The models from production are integrated with coreControl. Therefore, without 
any effort, you can leverage all of its features like monitoring your model and data, 
or serving a different version of the algorithm. 
 
Model serving will include obviously the additions of monitoring code to the model 
performance.  
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Model 
Monitoring 

 

 

 

 

 

 

While your model is in production, it is the subject to degradation. Your model is 
prepared to handle situations similar to those it was trained on. Hence it won’t 
respond well to data that is different from the one used for training.  

 

Moreover, as the model degrades, it requires careful monitoring to ensure that the 
prediction performance is not affected by the passage of time or other unexpected 
events. Therefore, robust production models require advanced monitoring that is 
usually divided into data monitoring and concept drift. Additionally, success 
criterias are monitored as the model is in service, which will help validate better 
model versions success.  
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Data 
Monitoring 

 

 

 

 

 

 

Many of the ML/AI models are based on time series data and require continuous 
training of models to keep it up to date. As your model is already in production, an 
automated model update or a manual one, require monitoring of the data to make 
sure it is keeping the same assumption you made in your research phase.  

Graphical representation of the various data, as well as valuable out of distribution 
events. Notification of drift, anomaly, and untrusted situations. 

With a robust data monitoring system, you are able to visualize all the data that is 
different from your training scenario. coreControl offers various methods that 
detect this drift like KL divergence, KS statistical test, tree methods, etc. Also, with 
an alarm system in place, you will be able to catch those scenarios in time and 
change them properly.  

In the end, with a proper monitoring system, you will always be prepared to adapt 
to new changes, quickly react to unexpected events, mitigate risks, and constantly 
bring value to your clients. 
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Concept drift 

Effective for monitoring the performance of the models during production run time 
and can detect model drifting, benchmarking for the engineering features, and 
more. CoreAI provides the relevant code for implementing on the running model 
serving code in order for it to report the performance. Additional benchmark 
building is feasible as well per the client needs. 

In this step, predictions from the production model are continually validated 
against the outputs from the test set. The end goal is for the data to be distributed 
according to the same statistical distribution. In other words, the values predicted 
by the model in production and the values predicted by the model on the test set 
should have similar (or even the same) statistical properties. Thus, the concept drift 
monitoring system will confirm that the model's behavior is consistent and persists 
over time. 
 
coreControl implements this monitoring component, which will continually run to 
check the similarity between the real-time and test prediction values. Therefore the 
system will swiftly detect a drift in the model's predictions, and you will be warned 
to appropriately respond to this event.    
 
Concept monitoring is performed using similar techniques as for the data 
monitoring step (e.g., KL divergence, KS statistical test, tree methods, etc.). 
Therefore, the outcomes of the model monitoring follows the same pattern as for 
the data monitoring. Using coreControl’s model monitoring component you will get 
real-time insights into the behavior of your models, in production which allow you 
to rapidly react to any unexpected events. Together, these tools help you adapt 
your data and ML strategy to assure control over your IT infrastructure and 
software applications. 
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Infrastructure / 
FinOps  

 
 

 
 
 
 
 
 
The last piece of the puzzle is the actual infrastructure that will sustain the model 
ecosystem. coreControl facilitates the possibility to monitor all your machines 
(CPU, memory, GPU, I/O, etc.) and turn them on/off on demand. It can be used both 
on-premise and on different cloud providers (e.g. AWS). The point of coreControl is 
to hide the complexity of your infrastructure and to unify different cloud providers 
or on-premise machines into a single view. Thus, it will be accessible to both 
technical and non-technical persons. 
 

The icing on the cake is the fact that coreControl will monitor all the costs that the 
infrastructure generated, this is what we call FinOps. The possibility of having 
control over your infrastructure costs. You can visualize all your expenditures over 
time. Also, you can set price thresholds for every specific experiment or even for a 
project. You will get notifications when you are close to finishing your credits and 
when you will pass your predefined threshold. Your current expenditures and 
predefined thresholds are displayed, in a single view, in your experiments or 
projects table.  
 

In the end, such a dashboard will help you understand the costs of your 
development and maintenance. Also, it will facilitate you with a forecasting 
mechanism to see how many resources you still need to achieve your goal. 
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BENEFITS IN USE CASES 
 
In the following two examples we will review the benefits of using coreControl and 
start getting control over MLOps process’s.  

 
1) Manage and Reconstruct your experiments 
2) Clear and easy to use data versioning and preprocessing - keep track of what 

data is used for each experiment  
3) End-to-end process visibility - view what is happening with the data, models, 

and infrastructure across multiple environments and project phases.  
4) Cost management - explore how much your ML is costing across all phases 

of your projects  
5) Benchmarking of experiments, model performance and data health 
6) Data Monitoring  

Use case 1 - Startup in the Medical Field 

One of our clients is a start-up in the medical field, which uses ML to increase 
efficiency and speed up time-consuming tasks, such as keypoint detection and 
segmentation in x-ray images.  
 
At the beginning, the ML components were developed in a local environment, by data 
scientists with good domain expertise, but minimal knowledge in the MLOps field. 
When the data scientists left the company, all the knowledge about the reasoning, 
processes, modeling and all the tracks of the experiments were lost.  
 
This has caused a massive technical debt, as the developers that came after had to 
reproduce their thought process and experiments to be able to reach the baseline 
performances.  
All the knowledge that had to be regained was documented and stored in a way such 
that any new team members can pick it up from that exact point, without any loss or 
technical debt. 



 

19 

 

Using coreControl and a pragmatic approach, we built pipelines that allow us to 
keep track of all the changes in software, data, or model, so that all the knowledge 
behind an experiment is preserved, in a collaboration-centric system. Moreover, as 
the client is involved in the medical domain, we also integrated automatic report 
generation for FDA compliance. 
 
The approach resulted in fast experimentation, with minimal code addition. The 
results are quantified by the following numbers. 
 

● 150+ total experiments, each of them 
having the following attached to it 

○ Traceable code, data and 
model versions.  

○ Hyperparameters and other 
configurations. 

○ A complete report for FDA 
compliance. 

○ Qualitative and quantitative 
performance reports.  

● 30+ experiments on augmentation 
strategies only, done in a systematic 
way. 

● 20+ of the best models stored and 
backed up. (along with everything that 
is required to reproduce them…) 

 
At the moment, the engineers and scientists do not spend any time collecting and 
logging metadata about experiments and models; Instead, coreControl automatically 
takes care of this, making the whole process more time-efficient. 
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Use case 2 - Demand forecasting 

A client in a traditional business domain looking to adopt ML for their operations. 
They wanted to pilot an end-to-end solution for predicting demand at multiple levels, 
starting with individual items and working their way up to regional outputs. 
 
Most ML projects get stuck at the development stage. When they get to the 
operationalization, deployment, and monitoring steps, they realize the complexity of 
the whole process, which is intimidating. It is essential to mention that all those 
components are mandatory to have a successful production ML application.  
 
Features Extraction <> Data Versioning - One of the greatest challenges was to 
extract the features that will be used in the training in this time series data. In this 
case, each additional feature created a data version.  This helped to quickly identify 
the contributing features to the accuracy of the predicting model.  
 
By using coreControl, we easily bypassed those impediments. With its 
operationalization functionalities, we quickly ran +100 experiments. Using its core 
comparison methods, we quickly picked the best model out of the experiments. Also, 
with the help of coreControl, we deployed and set up the monitoring infrastructure 
in less than two weeks. In the end, we had a ready-for-production pilot, with all its 
components in place, in less than two months. 
 
With the help of coreControl, we could quickly ingest the raw CSV files containing 
demand data into a dedicated data warehouse. From this point, the dataset was 
versioned, and any changes were reflected in the commits. As shown in the image 
below, we analyzed two data sources within the demand forecasting project. 
“Dataset Odyssey Sales Prediction” was newly added and initialized with version 
v1.0.0 and “Dataset Leaf Sales Prediction” was the subject of multiple changes ending 
with version v2.1.0. With an emphasis on an intuitive UI, coreControl displays an 
overview of the dataset, such as the description of the latest commit, automatically 
inferred statistics, and the newest samples added to the dataset. Hence, anybody 
can easily search any dataset existing within  the company.  
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Moreover, wecan tag any sample of the dataset with custom labels to make it more 
accessible for the users to recognize specific issues. For example, within the demand 
forecasting use case, we marked the examples that are difficult for the ML model to 
estimate or represent an outlier. Therefore, we could quickly test our model on those 
hand-picked samples and see how well it behaved. 
 
 

 
 

 

After the data is uploaded, coreControl automatically computes a set of statistics and 
displays them via our interactive dashboard. Here we can quickly see every feature's 
histogram, probability distribution, outliers, and more. Thus, we can quickly analyze 
our dataset without needing to write any code. The most powerful part of our 
technology is that now we can quickly compare different datasets and versions 
without writing any additional code. With the help of our comparison tool, we can 
easily see the differences between multiple datasets, such as the number of samples, 
required storage size, statistical properties, and much more. 

 

After coreControl ingested the raw data into the newly created data lake, we were 
able to develop a set of custom data pipelines to clean and normalize the data, to 
engineer new features, etc. The newly created features are stored in a feature store, 
and can be quickly accessed  from the cached features. This option is available from 
anywhere inside the coreControl ecosystem. Thus, the features can be shared 
between teams, machines, and even ML models. 
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Also, with the help of coreControl, we refined the whole experimentation process. 
For every experiment, we track all the variables that are relevant for a particular 
model together with its KPIs. This helps us compare different solutions statistically to 
ensure that the model with the best performance is pushed to production. More 
concretely, for every experiment, we follow all the core components of a training 
process, such as hyper-parameters, git commit, metrics, dataset version, etc. Within 
coreControl, we can see the state of the experiment, such as its main metrics, 
business KPIs and even how much it costs to run it on a given infrastructure. Our 
light Python SDK can easily log all those variables from our custom training code. 
With a click of a button, we can compare multiple experiments and decide on the 
best solution. 
 
Within only two weeks, we could run hundreds of experiments. With the pipeline 
orchestration infrastructure, we quickly engineered dozens of new features. 
coreControl comparing system helped us decide on the best model hyper-
parameters and optimal feature subset. Otherwise, picking the proper experiment 
would have gotten out of hand quickly and introduced errors in the decision process. 
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Therefore, we have an optimal tradeoff between an accurate ML model and the 
correct number of features. In the end, the model from production is accurate, fast, 
and memory efficient. 
 
 

 
 

 

We can drill down into each experiment and examine it in detail. However, 
coreControl is more than an experiment tracking tool. One thing we like about it is 
that it includes a FinOps component that lets us see our research expenses. As shown 
in the image below, we can effortlessly visualize our infrastructure's daily costs and 
usage. Hence, we can easily forecast how much resources we will need to train a 
specific model in the future. 

The last piece of the puzzle consists of the deployment process. coreControl 
leverages container technologies (i.e. Docker) to deploy the solution. This process 
permits us to engineer a scalable infrastructure in a very short time. We wrapped up 
the ML solution with a RESTful API , which makes it accessible over the internet with 
very little hustle. By using a RESTful API we can now integrate the model into any 
system, for example, you can have a client application that displays the predictions 
or and a server application that uses the predictions as part of more complicated 
process. The image below shows an example where we deployed two models.  For 
each model, we can visualize their metrics, information about the drift status (both 
data and concept drift), required infrastructure, and accumulated costs.  
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Moreover, for every project, we can deploy various versions of the model  
which makes A/B testing and experimentation a lot easier compared to more 
traditional methods.  
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coreControl is continually monitoring the deployed model with different data and 
concept drift metrics. In the image below, you can observe an example of our 
monitoring in real-life. The teal and red bars, from the image below, represent the 
upper and lower bounds for the metrics (i.e. the intervals within which the data and 
model behave as expected). coreControl has out-of-the-box statistical tools to detect 
drift, such as KL divergence, KS statistics, tree methods, etc. After the monitoring 
system detects any value outside the allowed interval, an alarm is triggered, and the 
coreControl monitoring system will notify you that a specific drift is detected. 

 

What is even more powerful, is that coreControl includes a fully customisable 
monitoring system whereby you can pick from a series of predefined metrics or even 
create your own.  
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Finally, coreControl offers a FinOps component. Using this feature, we can visualize 
the daily and accumulated costs of our production infrastructure. Moreover, this 
feature offers us a clear view of the resources that our solutions need. Also, we can 
quickly analyze the sustainability and scalability of the software component to bring 
as much value as possible to the company. The FinOps feature ensures us that we 
will always be aware of the current infrastructure costs so that we will never end up 
with skyrocketing infrastructure bills  overnight.  
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Using coreControl, we quickly set up the infrastructure on our cluster of computers. 
We immediately ingested the data into our data lake, where we automatically 
visualized and explored it. The data is versioned and ready to be cleaned, 
transformed, and modeled into our data pipeline. With the robust infrastructure in 
place, we efficiently run over 100 experiments. By using coreControl, we recorded 
all the ML experiments metadata. After using our powerful comparing tool, we 
picked up the best model, which we containerized and passed directly to the 
deployment infrastructure managed entirely by coreControl. With the FinOps 
component, we planned how many experiments we could run without overflowing 
our budget. Thus, by having a clear view of our resources, we focused on reaching 
our target KPI within the given restrictions. By having the monitoring component up 
and running, we prevented one crucial concept drift of the model. It predicted more 
sales to a specific shop than it should. Therefore, we avoided oversupplying a shop 
and saved lots of resources. 

 

To conclude, with the help of coreControl, we versioned and modeled the dataset. 
We designed, built, tuned, and deployed the model. Also, we put in place the 
monitoring component. Using coreControl, our team achieved all those steps in less 
than two months, and on other projects, it took us more than one year to fulfill all 
those milestones. By using coreControl, we had almost a 90% increase in efficiency. 
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